Fuel Saving Devices





imageedit_5_3949838586

Website Investments

Fuel Saving Devices

Petrol - Gas - Fuel - Oil

Additives - Magnets - Vapor devices - Air bleed devices






Pervaporation, Vapour Permeation And Membrane Distillation

RRP $50.99

Click on the Google Preview image above to read some pages of this book!

Vapour permeation and membrane distillation are two emerging membrane technologies for the production of vapour as permeate, which, in addition to well-established pervaporation technology, are of increasing interest to academia and industry. As efficient separation and concentration processes, they have high potential for use in the energy, water, chemical, food and pharmaceutical sectors.

Part One begins by covering the fundamentals, preparation and characterization of pervaporation, before going on to outline the associated systems and applications. State of the art uses, future trends and next generation pervaporation are then discussed. Part Two then explores the preparation, characterization, systems and applications of membranes for vapour permeation, followed by modelling and the new generation of vapour permeation membranes. Finally, Part Three outlines the fundamentals of membrane distillation and its applications in integrated systems, before the book concludes with a view of the next generation.

  • Explores three emerging membrane technologies that produce vapour as a permeate.
  • Looks at the fundamentals, applications, state of the art uses and next generation of each technology.
  • Provides an authoritative guide for chemical engineers and academic researchers interested in membrane technologies for desalination, process water/steam treatment, water purification, VOCs removal and other aspects of pollution control, industrial process chemistry, renewable energy production or separation and concentration in the food/pharmaceutical industries.


Quantum Transport In Ultrasmall Devices

RRP $436.99

Click on the Google Preview image above to read some pages of this book!

The operation of semiconductor devices depends upon the use of electrical potential barriers (such as gate depletion) in controlling the carrier densities (electrons and holes) and their transport. Although a successful device design is quite complicated and involves many aspects, the device engineering is mostly to devise a "best" device design by defIning optimal device structures and manipulating impurity profIles to obtain optimal control of the carrier flow through the device. This becomes increasingly diffIcult as the device scale becomes smaller and smaller. Since the introduction of integrated circuits, the number of individual transistors on a single chip has doubled approximately every three years. As the number of devices has grown, the critical dimension of the smallest feature, such as a gate length (which is related to the transport length defIning the channel), has consequently declined. The reduction of this design rule proceeds approximately by a factor of 1. 4 each generation, which means we will be using 0. 1-0. 15 ). lm rules for the 4 Gb chips a decade from now. If we continue this extrapolation, current technology will require 30 nm design rules, and a cell 3 2 size < 10 nm , for a 1Tb memory chip by the year 2020. New problems keep hindering the high-performance requirement. Well-known, but older, problems include hot carrier effects, short-channel effects, etc. A potential problem, which illustrates the need for quantum transport, is caused by impurity fluctuations.



Search

Fuel Saving Devices Articles

Petrol Gas Fuel Oil
Additives Magnets Vapor devices Air bleed devices
Electronic devices Thermodynamic efficiency

Fuel Saving Devices Books

Petrol Gas Fuel Oil
Additives Magnets Vapor devices Air bleed devices
Electronic devices Thermodynamic efficiency

Fuel Saving Devices





imageedit_5_3949838586

Website Investments